Model Neural Network Autoregressive untuk Prediksi Inflasi Bulanan di Kota Yogyakarta

نویسندگان

چکیده

AbstrakYogyakarta sebagai kota pelajar, pariwisata ataupun budaya sangatlah ramai aktifitas ekonominya karena banyak sekolah, universitas, tempat wisata dan juga yang tentunya mahasiswa, wisatawan dalam negeri maupun luar berkunjung ke tersebut. Aktifitas mahasiswa di Yogyakarta ini bisa meningkatkan perekonomian seperti kost, penginapan atau hotel serta tidak ketinggalan makan, belanja lain sebagainya. Penelitian mempunyai tujuan untuk memprediksi inflasi bulanan Data sekunder diperoleh dari BPS pusat. digunakan yaitu data mulai Januari 2006 sampai dengan Desember 2021, sebanyak 192 data. menggunakan model peramalan jaringan syaraf tiruan (JST) artificial neural network (ANN). Model JST ANN autoregressive (NNAR). NNAR algoritma backpropogation fungsi aktifasi sigmoid biner. Pengolahan pada penelitian R package statistics merupakan open source program. Hasil kesimpulan adalah terbaik NNAR(12,8) artinya input berupa lag-1 lag-12 koya single hiden layer 8 neuron. Akurasi ukur root mean square error (RMSE, sebesar 0.05962758), absolute (MASE, 0.1011443), percentage (MAPE, 28.32449). Saran lanjutan, hendaknya dibandingkan berbasis sistem cerdas (artificial intelegent, AI).

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Autoregressive and Neural Network Model Based Predictions for Downlink Beamforming

In Time-Division-Duplex (TDD) wireless communications, downlink beamforming performance of a smart antenna system can be degraded due to variation of spatial signature vectors in vehicular scenarios. To mitigate this, downlink beams must be adjusted according to changing propagation dynamics. This can be achieved by modeling spatial signature vectors in the uplink period and then predicting the...

متن کامل

An Interpretable Lstm Neural Network for Autoregressive Exogenous Model

In this paper, we propose an interpretable LSTM recurrent neural network, i.e., multi-variable LSTM for time series with exogenous variables. Currently, widely used attention mechanism in recurrent neural networks mostly focuses on the temporal aspect of data and falls short of characterizing variable importance. To this end, our multi-variable LSTM equipped with tensorized hidden states is dev...

متن کامل

Nonlinear Autoregressive Recurrent Neural Network Model For Solar Radiation Prediction

Solar Radiation (SR) is one of the most important parameters in the design of photovoltaic systems (PVs). An accurate evaluation of the SR of a given location is essential for the efficient design and utilization of PVs. In this paper, a nonlinear autoregressive recurrent neural networks with exogenous input (NARX) was used to predict the SR in Mutah city. Hourly, weather data of three variable...

متن کامل

A Neural Autoregressive Topic Model

We describe a new model for learning meaningful representations of text documents from an unlabeled collection of documents. This model is inspired by the recently proposed Replicated Softmax, an undirected graphical model of word counts that was shown to learn a better generative model and more meaningful document representations. Specifically, we take inspiration from the conditional mean-fie...

متن کامل

Stationary and Integrated Autoregressive Neural Network Processes

We consider autoregressive neural network (AR-NN) processes driven by additive noise and demonstrate that the characteristic roots of the shortcuts-the standard conditions from linear time-series analysis-determine the stochastic behavior of the overall AR-NN process. If all the characteristic roots are outside the unit circle, then the process is ergodic and stationary. If at least one charact...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Jurnal sistem dan teknologi informasi

سال: 2023

ISSN: ['2620-8989', '2460-3562']

DOI: https://doi.org/10.26418/justin.v11i2.54370